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It is well known that when s, the selection coefficient against a deleterious mutation, is below 01/4Ne,
where Ne is the effective population size, the expected frequency of this mutation is 00.5, if forward and
backward mutation rates are similar. Thus, if the genome size, G, in nucleotides substantially exceeds the
Ne of the whole species, there is a dangerous range of selection coefficients, 1/GQsQ1/4Ne. Mutations
with s within this range are neutral enough to accumulate almost freely, but are still deleterious enough
to make an impact at the level of the whole genome. In many vertebrates Ne1104, while G1109, so that
the dangerous range includes more than four orders of magnitude. If substitutions at 10% of all nucleotide
sites have selection coefficients within this range with the mean 10−6, an average individual carries 0100
lethal equivalents. Some data suggest that a substantial fraction of nucleotides typical to a species may,
indeed, be suboptimal. When selection acts on different mutations independently, this implies too high
a mutation load. This paradox cannot be resolved by invoking beneficial mutations or environmental
fluctuations. Several possible resolutions are considered, including soft selection and synergistic epistasis
among very slightly deleterious mutations.
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Introduction

The effects of individual deleterious mutations
on fitness vary from lethality to neutrality. If the
coefficient of selection, s, against a mutation is
substantial, its dynamics are essentially deterministic
and depend only on mutation and selection (Wright,
1929; Haldane, 1937; Kimura & Maruyama, 1966).
In contrast, dynamics of very slightly deleterious
mutations (VSDMs) are stochastic, being also
influenced by random drift (see Ohta, 1992). Such
alleles can become frequent and even be
temporarily fixed, until the best allele is recreated by
mutation. This can increase the mutation load,
compared to the case of substantially deleterious
alleles that are always kept rare by selection
(Kimura et al., 1963). The study of VSDMs constitutes
one of the pillars of population genetics (Crow,
1970; Crow & Kimura, 1970; Kimura, 1983; Ohta,
1992).

A genome can carry a ‘‘tremendous’’ (Li, 1987)
number of VSDMs and the consequences of this
contamination in the context of molecular evolution
have been carefully studied (Ohta, 1992). In contrast,
its implications to the fitness of individuals have not
attracted much attention. Kimura et al. (1963: 1308)
suggested that these implications are serious only
in rather small populations, because they assumed
a small number of loci (0104), under which only
VSDMs with sq10−4 can make a cumulative impact.
However, if individual nucleotide sites are treated as
loci, their number can exceed 109. Crow (1972, 1993)
argued that the impact of VSDMs ‘‘may be well
neutralized by the extinction of small populations
accumulating too many such mutants’’ (p. 14).
However, the effective population size,Ne, of thewhole
species can be small enough to permit accumulation of
VSDMs, possibly causing its complete extinction.
Using data on DNA sequences, Tachida (1990)
concluded that VSDMs impairing only one function of
DNA—its interaction with nucleosomes—may lead to
too high a mutation load.E-mail: ask3.crux2.cit.cornell.edu.
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The impact of VSDMs on survival of small sexual
populations has been considered by Gabriel et al.
(1991), Lande (1994) and Lynch et al. (1994). They
assumed independent selection against different
mutations and concluded that after a drop in Ne

to a new value, the VSDMs begin to accumulate
after 04Ne generations and then can rapidly drive
the population to extinction when NeQ100−1000.
Mutations with s 01/Ne are the most dangerous,
because those with higher s have no chances to be fixed,
while those with lower s do less damage (Lande, 1994).
Simultaneous selection against many mutations can
lead to the further decline ofNe and facilitate extinction
(Li, 1987; Lynch et al., 1994). These results are relevant
to the problems of conservation of the populations that
experience a recent drop in size and are thus far from
equilibrium.

Here, I address the complementary problem: the
impact of VSDMs for equilibrium fitness. This is
justified when the Ne of a species made it vulnerable to
VSDMs over a very long time. First, I present heuristic
arguments, and supplement them with a simple
one-locus model. Then, I interpret the results in terms
of the whole genome and show, in agreement with
Tachida (1990), that VSDMs can cause too high a
mutation load even when Ne0106–107. After this, the
data on the relevant parameters in nature is reviewed,
showing that the conditions under which the load may
be paradoxically high are quite realistic. Finally,
possible resolutions of this paradox are discussed.

Heuristic Arguments

Consider a locus A with two alleles A and a. The
mutation rate from A to a is m, and from a to A is n.
Mating is random and the effective population size
is Ne. Selection occurs in the diplophase, and the
genotypes AA, Aa, and aa have fitnesses 1, 1-s, and
1-2s, respectively, where 0QsQ0.5 is the selection
coefficient against a.

I shall treat nucleotide sites as loci and consider
substitutions only. Then, A is the best nucleotide
at some site, while a denotes collectively three other
nucleotides (Kimura, 1983: 197; Li, 1987: 338), and
m1n (with all substitutions equally frequent, m=3n).
Of course, consideration of deletions and insertions
would imply m�n.

If s�m, mutation is a stronger force than
selection and the expected value of the frequency of a,
x, is always close to the mutational equilibrium
m/(m+n)10.5 (the variance of x declines when Ne

grows). Thus, because a decreases fitness by s, the
mutation load (see Crow, 1970) is 0s under any m and
Ne (Kimura et al., 1963).

In contrast, if s�m, the load depends on Ne. When
Ne is large enough (4Nes�1), random drift is
unimportant and x is always low (0m/s), thus
deviating from the mutational equilibrium. The
maintenance of this deviation requires that each
generation almost all alleles that mutated from A to a
are eliminated, because a and thus mutations from a to
A, are rare. Thus, the load is 0m (see Crow, 1970;
Burger & Hofbauer, 1994). However, when 4Nes�1
the expected x grows to 0m/(m+n), and the load
becomes 0s, so that a decline in Ne leads to a higher
load (Fig. 1). The transition between the asymptotics
of large and small 4Nes essentially occurs while it
changes within one order of magnitude (Kimura et al.,
1963, their figure 2).

Let us now consider the genome consisting of G
nucleotides, assuming that m and s are the same at all
G sites. If the genomic deleterious mutation rate
U=Gm exceeds one, the total mutation load can be too
high even when drift is not important. This
deterministic mutation load paradox can be resolved if
selection is epistatic, which leads to a smaller load
under a given mutation rate (Kimura & Maruyama,
1966; Crow, 1970; Shnol & Kondrashov, 1994).

Here, I consider the stochastic mutation load
paradox, which may occur when drift increases the
load (Fig. 1). If the total load is related to the sum
of selection coefficients at individual sites (number of
lethal equivalents, Crow, 1970), which is true if
selection acts on them independently, it may be too
high (0Gs�1) in a small population, but not in a
large one (0GmQ1). I call deleterious mutations

F. 1. The region in the space of parameters s, m, and Ne where
the stochastic mutation load paradox is possible is bounded by the
bold line. High frequencies of mutant alleles require 4NesQ1, while
the increase of the load due to random drift requires sqm. Thus
4NemQ1 is implied.
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T 1
The numerically calculated M[f] as a function of 4Nes and 4Nem when m=n

4Nes

4Nem 1000 100 10 1 0.1 0.01 0.001

1000 0.382 0.488 0.499 0.500 0.500 0.500 0.500
100 0.090 0.382 0.488 0.499 0.500 0.500 0.500
10 0.008 0.091 0.387 0.488 0.499 0.500 0.500
1 0.001 0.004 0.014 0.319 0.481 0.498 0.500
0.1 0.000 0.001 0.002 0.271 0.475 0.498 0.500
0.01 0.000 0.001 0.001 0.270 0.475 0.498 0.500

Equation (3) 0.000 0.000 0.000 0.269 0.475 0.498 0.500

with sQ1/G and sQ1/4Ne ‘‘genomically neutral’’
and ‘‘populationally neutral’’, respectively. Even if
genomically neutral nucleotides occupy all the
genome, their cumulative effect is still small. Thus,
because only a populationally neutral mutation can
reach a high frequency, random drift causes no new
problems if 1/Gq1/4Ne. In contrast, if Gq4Ne, there
is a dangerous range of the values of s, 1/GQsQ1/4Ne.
A mutation with such s is genomically deleterious but
populationally neutral. It can reach a high frequency,
and the total load caused by suchmutationsmaybe too
high.

In many species (see below) G1109 and Ne1104.
Then, if at 10% of all nucleotides the values of s are
below 10−5, with the average 010−6, it apparently
implies 0100 (10%×109×10−6) lethal equivalents per
genome, which is reflected in the title of this paper.

Formal Model of a Single Locus

In the situation described above, f(x), the
probability that at a given moment of time x is between
x−dx/2 and x+dx/2, is:

f(x)=C e−4Nesxx4Nem−1(1−x)4Nen−1 (1)

where C can be found from the condition

g
1

0

f(x) dx=1

(Crow & Kimura, 1970, eqs 9.3.3 and 9.1.4). The
expected frequency of x

M[f]=g
1

0

xf(x) dx (2)

can be generally expressed only as the sumof an infinite
series (Li, 1987). However, if m and n are both small,

M[f]1 m/n
m/n+e4Nes

. (3)

Thus, in this low mutation rate limit M[f] approaches
zero when s�1/4Ne, and m/(m+n) when s�1/4Ne.
Numerical results (Table 1) show that M[f] is always
close to (3) when 4Nem, 4NenQ1, so that for our
purposes (3) is sufficient (Fig. 1). Here (3) is derived
directly from (1) (seeAppendix; comparewithLi, 1987,
eq. 8; Zeng et al., 1989; Bulmer, 1991, eq. 6).

Let us now calculate V[n], the expected populational
variance of n, the number of deleterious alleles at locus
A per diploid individual. Under a given x the variance
of n is, assuming Hardy–Weinberg proportions,
2x(1−x). Thus

V[n]=2 g
1

0

x(1−x)f(x) dx

=20M[f]−g
1

0

x2f(x) dx1. (4)

Of course, V[n] is different from

V[f]=g
1

0

x2f(x) dx−M[f]2,

the variance of f(x). With 4Nem, 4Nen�1, when f(x)
is U-shaped because most of the time either allele is
fixedor close to fixation,V[f] is highwhileV[n] is small
(Crow & Kimura, 1970, eq. 9.2.7, fig. 9.3.1).

When m and n tend to zero, V[n] also approaches
zero. If r=m/n remains invariant, the rate of this
approach, relative to the geometric mean of 4Nem and
4Nen, is (see Appendix)

R=
1V[n]

1(4Nezmn)
=

1
!r

1V[n]
1(4Nen)

=
2zm/n(1−e−4Nes)

4Nes(1+(m/n) e−4Nes)
. (5)
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Very Slightly Deleterious Mutations in the Whole

Genome

Assume that at all G sites of the genome m and n

are the same and all the processes at them are
independent. If q(s) is the fraction of sites with
selection coefficients against a between s−ds/2 and
s+ds/2, the proportion of populationally neutral sites
in the genome is

f=g
1/4Ne

0

q(s) ds (6)

and the average selection coefficient at such sites is

s̄=f−1 g
1/4Ne

0

sq(s) ds. (7)

Let us define contamination of an individual diploid
genotype D as the sum of selection coefficients against
all its deleterious nucleotides. Thus, D is also a number
of lethal equivalents, where a lethal equivalent is a
group of mutations that, if dispersed in different
individuals chosen at random from the population,
would diminish their expected number of offspring by
one (compare with Crow, 1970: 135). The fitness of an
individual w depends on D.

Because M[f]10.5 with m1n and sQ1/4Ne

[eqn (3)], the average of the populational distribution
of D, c(D), is

M[c]=2G g
1/4Ne

0

M[f]sq(s) ds1Gfs̄. (8)

and, because R11 [eqn (5)], the variance of c(D),
ignoring linkage disequilibrium and assuming 4Nem,
4Nen�1, is:

V[c]=G g
1/4Ne

0

4NezmnRsq(s) ds14NemGfs̄. (9)

BecausezV[c]�M[c], themeanpopulation fitness
is close to w(M[c]), if w(D) changes slowly. Thus,
without epistasis, i.e. under exponential selection
(Shnol & Kondrashov, 1993) w(D)=e−D (we
can assume w(0)=1 without loss of generality, while
the coefficient with D must be one because of the
definition of D) the load is

L=1−e−M[c]=1−e−Gfs̄. (10)

Such a load is tolerable only if

Gfs̄I1, (11)

i.e. when the average contamination of individuals
does not greatly exceed 1. This is always the case if
GQ4Ne, so that s̄Q1/G. In contrast, with Gq4Ne the
load can be too close to 1.

To estimate the minimal load possible under any
w(D), suppose that c(D) is Gaussian, which is
reasonable because D consists of many independent
(assuming linkage equilibrium) contributions. Than,
the selection coefficient against a small group of
individualswith the distributionofD slightly shifted by
k to the right, relative to the rest of the population, is
(Kimura & Crow, 1978, eq. 16a)

sk=k
−D
V[c]

, (12)

where D is the selection differential of D. Such a group
can consist of those carrying an independently
distributed rare allele that contributes k into D.
Because of the definition of D, sk=k, so that
V[c]=−D. Even under the most efficient truncation
selection, which is the extreme case of syn-
ergistic epistasis, the load is too high if =D=/zV[c]q2
(see Shnol & Kondrashov, 1994; Kondrashov, 1994),
which becomes zV[c]q2. Thus, according to (9) the
load is tolerable when

NemGfs̄Q1. (13)

Therefore, the stochastic mutation load paradox
appears readily under exponential selection due to
violation of (11) (Tachida, 1990), but is less likely
to appear under synergistic epistasis where violation of
(13) is necessary, because we have assumed small Nem.

Data on Natural Populations

We have seen that under some of G, m, Ne, and q(s)
random drift can seriously aggravate the impact of
VSDMs on fitness in an equilibrium population. While
the stochastic mutation load paradox is hardly
applicable to unicellular organisms with their huge
populations and relatively small genomes, in many
multicellular organisms G�Ne. Let us consider each
parameter separately.

   

The genome sizes can be rather variable even within
a genus. For each taxon we should look for a species
with the smallest genome, because it probably contains
the minimal fraction of genomically neutral ‘‘junk’’
DNA. The minimal known values of G are 70×106 in
flowering plants (Arabidopsis thaliana, Meierowitz,
1987), 140×106 in insects (Drosophila melanogaster,
see Lewin, 1994, Ch. 22), and 400×106 in fishes (Fugu
rubripes, Brenner et al., 1993). Birds (1200×106 in
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Gallus domesticus) and mammals (3300×106 in Homo
sapiens) (see Lewin, 1994, Ch. 22) have rather uniform
G ’s. Over 50% of DNA in all these species is unique.

     m

Various methods indicate that in mammalian
nuclear DNA m110−8 (see Britten, 1986; Kondrashov,
1988; Takakata, 1993; Mohrenweiser, 1994), and is
probably 010−7 (Takahata, 1993) or even higher
(Lundstrom et al., 1992) in mitochondria. Although at
some nuclear sites m can be much higher than 10−8

(Jeffreys et al., 1991; Bissler et al., 1994; Rousseau
et al., 1994), the background mutation rate probably
stays within the same order of magnitude along the
genome.

    e

The properties of equilibrium under m110−8 depend
on the long-term Ne of the whole species. In a local
population Ne is usually substantially lower than NT,
the total number of individuals (see Crow & Kimura,
1970; Nei, 1987; Harris & Allendorf, 1989; Allendorf
et al., 1991). Spatial structure complicates the concept
of Ne (Sugg & Chesser, 1994). Variance Ne increases
with constant spatial structure (Maruyama, 1972,
1977; Nei & Takahata, 1993), while with
local populations disappearing and reappearing it
decreases drastically (Maruyama & Kimura, 1980;
Barton, 1993; Whitlock, 1994). However, we are
interested in a different Ne, which characterizes
efficiency of selection. I am obliged to Nick Barton for
the following explanation.

Spatial structure always reduces the efficiency of
selection, as long as different local populations have
different allele frequencies, because selection operates
slower when an allele is closer to fixation. Even if NT of
the species is infinite, spatial subdivision can lead to
fixation of the allele a when n=0. In this case with s�m

the equilibrium frequency of a is m/[s(1-FST)], instead
of m/s without spatial structure, where Wright’s
fixation index FST measures genetic differentiation
among local population (see Crow & Kimura, 1970).
Thus, we can expect Ne (in the sense relevant here) of
a species to be smaller than its NT. Of course, Ne may
exceed NT temporarily if NT is small because of unusual
environmental conditions or anthropogenic impact,
which is frequently the case for species with small NT.

In some species with large body size, especially those
occupying the upper positions in the trophic chains,
even the highest NT possible when the range and the
density of a species are maximal, is low. The breeding
density of the birds of prey with female body-weight of
3 kg or more is about one pair per 100 km2 (Newton,
1979, figure 10), and the ranges of such species imply

NT0104–105, and may be even less. Large baleen
whales and the larger toothed whales had NT1105

before the impact of whaling (Ridgway & Harrison,
1985, 1989), despite their huge ranges. The total
number of grizzly bears before the arrival of
Europeans is estimated as 105 (Allendorf et al., 1991).
In a species with a narrow range NT can be even lower.
For example, in Lathimeria chalumnae NTQ104

(Thomson, 1991: 220), and apparently it has not been
much higher for quite a long time. Other examples can
be found in Nei & Graur (1984).

To interpret the data on NT in terms of Ne we need
to know the history of NT (Slatkin, 1987; Slatkin &
Barton, 1989; Hudson et al., 1992) and FST. In many
species FST is low (Georgiadis et al., 1993; Takahata,
1993), while in other, sometimes closely related species
FST is high (Cronin et al., 1991; Routman, 1993),
suggesting NeQNT.

Alternatively, the Ne of a species (more precisely,
4Nem) can be estimated directly from the data on its
neutral genetic variability, regardless of NT. Data on
protein electromorphs (see Nevo et al., 1984) suggest
that in most vertebrates Ne1104–105, while in
invertebrates it is 10–100 times higher (Nei & Graur,
1984). These data frequently indicate that Ne�NT.
Many not very large mammals, perhaps with NTe106,
have low variability implying NeE104 (Allendorf et al.,
1979; Simonsen, 1982; Simonsen et al., 1982a, b).

However, it is still not clear to what extent
electromorphs are neutral, and the data on the
variability at the DNA level are preferable from this
perspective (Karl & Avise, 1992). Several formal
methods are available to infer Ne from such data (see
Fu, 1994). For many species, such estimates yield
Ne0104, e.g. for the polar bear (Cronin et al., 1991),
moose (Cronin, 1992), African elephant (Georgiadis
et al., 1994), red-winged blackbird, American eel, and
hardhead catfish (Avise et al., 1988; Table 1), and
several other fish species (Gold, 1993, his Table 6),
while NT was much higher in some cases. This may be
caused by fluctuations of NT, by spatial structure, and
by the impact of selection (Bulmer, 1991; Begun &
Aquadro, 1992; B. Charlesworth et al., 1993). In Homo
sapiens, where now FST is low, Ne1104 in the last 1 Myr
(Takahata, 1993).

We may conclude that both ecological and genetical
evidence suggest that in many large and even not so
large vertebrates, even those occupying (or have
occupied before the anthropogenic impact) wide
ranges, the long-term Ne of the whole species is 0104.
Species with narrow ranges may have even smaller
Ne’s. Many plants also have very low Ne’s due to
inbreeding (Breiman et al., 1991; Husband & Barrett,
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1992; Parra et al., 1993; Eguiarte et al., 1993), although
it is unclear for how long they remain so low.

     q(s)

In nature, most deleterious mutations have only
slight effects and are semi-dominant (see Crow &
Simmons, 1983). Even for null-alleles of the loci
studied by electrophoresis, s is only 010−3 (see
Gillespie, 1991: 60; Harada et al., 1993). However, the
data on DNA hybridization suggest that in mammals
nucleotide substitutions are populationally deleterious
at least at 010% of the unique DNA (Britten, 1986),
because 010% of such DNA hybridizes between
species that diverged more than m−1 generations
ago. If the large-scale heterogeneity in the DNA
composition in mammals and birds is maintained
by selection (isochores, see Bernardi, 1993), this
would also suggest that sq1/4Ne for very many
substitutions.

If so,what is left for sites having selection coefficients
within the dangerous range? To measure s directly for
such sites is difficult, because suboptimal nucleotides
are frequent there. When s declines, the transition from
low to high frequency of such nucleotides is rather
abrupt. Thus, an intermediate frequency of apparently
suboptimal nucleotides, although explainable by the
values of 4Nes within a narrow range (0.4–0.8,
Tachida, 1990) more realistically implies heterogeneity
of selection coefficients.

According to (3), f can be indirectly measured as
twice the frequency of suboptimal nucleotides in the
genome, which can be estimated as follows. Consider
two lineages originating from a common ancestor with
the Ne values N1 and N2 (N1qN2). Then, ignoring
beneficial mutations, we can estimate the fraction of
nucleotide sites where 1/4N1QsQ1/4N2 by comparing
the substitution rates in these lineages, because in the
first lineage such sites are always occupied by the best
nucleotides and thus do not evolve, while in the second
lineage they are populationally neutral and thus evolve
almost as fast as neutral ones (Ohta, 1992, 1993a).

This was recently done by Ohta (1993b), who
compared the rates of synonymous and replacement
nucleotide substitutions in protein-coding DNA
of rodents and primates. She has found that the
per generation rate of replacement substitutions was
approximately two times higher in primate lineage,
while synonymous substitution rates were roughly the
same. She concluded that synonymous substitutions
are populationally neutral in both lineages, while
the fraction of populationally neutral replacement
substitutions in the primate lineage is twice as large as
that in the rodent lineage.

Suppose that N11106 (rodents) and N21104

(primates) (Nei & Graur, 1984). Their common
ancestor probably had Ne1N1, so that the difference
between the lineages is caused by accumulation of
VSDMs in primates. Then, because in the primate
lineage in 011000 nucleotides there were 0650
replacement substitutions, roughly half of them
‘‘excessive’’, Ohta’s conclusion implies that in at least
in 03% of nucleotides in the protein-coding regions s
is within 10−5–10−7. It is unclear how many nucleotides
have sQ10−7, but it is probably a lot, because in
rodents there also were 1000 replacement substi-
tutions, although some of them may be beneficial.

To interpret these data in termsof thewhole genome,
note that in mammals 0600×106 nucleotides are
transcribed in the brain (Takahashi, 1992), and
01000×106 nucleotides are transcribed in at least one
tissue (Evtushenko et al., 1989). Assuming that only
10% of length of the nuclear RNA is later translated,
this implies that the total length of protein-coding
regionsP is0100×106. This is consistentwith the data
on yeast, where G=14×106 and q50% of DNA in
chromosome III is coding, implying P010×106

(Oliver et al., 1992) and C. elegans, where G1108 and
030% of a long region of chromosome III is coding,
implying P030×106 (Wilson et al., 1994).

Thus, Ohta’s data imply that the genome of a
primate carries at least 3×106 suboptimal nucleotides
only in the protein-coding regions (and perhaps
much more: see Eastreal & Collet, 1994). Of course,
sites with dangerous values of s also occur in
non-translated and even in non-transcribed DNA,
because the pattern of selection in the adjacent coding
and non-coding regions may be similar (Li & Salter,
1991). A similar analysis would be interesting for
non-transcribed DNA, where pseudogenes can serve
as the neutral markers, while changes in 5'-upstream
regulatory regions can be analogous to replacement
substitutions. It may also be worth comparing the
patterns of substitutions in the pairs of lineages that
underwent profound phenotypic changes, and those
that remained essentially unchanged for a long time.

Discussion

The data strongly suggest that, at least in many
vertebrates, G�Ne. Thus, the dangerous range of
selection coefficients 1/GQsQ1/4Ne can be wide. The
values of m are low enough to make the condition s�m

true for most of this range, so that random drift can,
indeed, substantially increase the mutation load. In
contrast to the deterministic case (sq1/4Ne, see Crow,
1970; Kondrashov, 1988, 1993), the load can become
excessive even when UQ1.
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Traditionally (see Ohta, 1992) mutations with
sQ1/4Ne (sometimes other similar thresholds are used)
are called very slightly deleterious. However, in an
equilibrium population all four nucleotides have
similar expected frequencies at a site with such s, so
that a mutation has similar chances of being either very
slightly deleterious or very slightly beneficial.
Substitutions (fixations or quasifixations of the best or
a suboptimal nucleotide) at such a site occur almost at
the rate characteristic of neutral sites, on average once
in m generations (Tachida, 1990, figure 5). Of course,
deleterious mutations can outnumber beneficial
temporarily, after a drop of Ne (Lande, 1994; Lynch
et al., 1994).

Contamination by VSDMs is related to Muller’s
ratchet (see Lynch et al., 1993) because both are
stochastic phenomena. However, the ratchet operates
when individual alleles are still rare, and thus requires
obligate or almost obligate asexuality or selfing
(see D. Charlesworth et al., 1993; Lynch et al., 1993).
In contrast, the accumulation of VSDMs is possible
under sex and outcrossing, although asexuality, which
diminishes Ne due to more intensive hitch-hiking, can
facilitate it (Charlesworth, 1991; B. Charlesworth
et al., 1993; Rice, 1994; Lynch et al., 1994).

The principle question is whether—as my analysis
apparently suggests—contamination by VSDMs
implies an excessive load, leading to the stochastic
mutation load paradox. I shall first review the
simplifications used in my analysis. Then the reality
of this paradox will be assessed. Finally, possible
resolutions will be discussed.

 

I have assumed m1n. In fact, men. Even if only one
suboptimal nucleotide is populationally neutral, while
the other two have sq1/4Ne and have to be ignored,
m=n if mutation rates are symmetric. Thus eqn (8)
underestimates the expected contamination.

I have ignored insertions and deletions, which is
justified for protein-coding DNA, where they are
usually significantly deleterious. However, in other
regions (see Gillespie, 1991: 78) they may be common
and populationally neutral. First, with insertions
and deletions the rate of forward mutation greatly
exceeds the backward rate, leading to a higher
equilibrium contamination. Second, they make it
impossible to consider different sites separately,
increasing the number of trajectories in the space of
sequences (Gillespie, 1984).

Let us arrange all the sequences linearly from zero
to infinity, and assume that only mutations between
the adjacent states have non-negligible frequencies
(stepwise mutation model, Kimura, 1983: 229). The

number of a state indicates the minimal number
of mutations that separates it from the best one,
and the fitness decreases with this number. The
frequency distribution of the state number can reach
an equilibrium. However, if mutations that increase
the number of a state are more frequent than backward
mutations, weak selection in a finite population may be
unable to prevent the unlimited increase of the average
state number and, thus, the unlimited decline of fitness.
A similar phenomenon is possible in infinite
populations under inefficient selection with diminish-
ing returns epistasis (Kimura & Maruyama, 1966).

It is unclear how natural populations can avoid this.
One possibility is that after some deviation from the
optimum each next mutation becomes very deleterious
(synergistic epistasis, see below). Anyway, the
assumption that there is an equilibrium contamination
can only underestimate the impact of VSDMs.

Finally, I have extrapolated the results from an
individual site to the whole genome. There is a
consensus that this leads to underestimation of the
genome contamination (Li, 1987; Bulmer, 1991;
B. Charlesworth et al., 1993; Lynch et al., 1994),
because selection processes at different sites interfere
with each other. However, this can be probably taken
care of by assuming a lower Ne (Bulmer, 1991). Note,
that the values of Ne measured from the data on
molecular variability take the results of selection into
account.

      ?

According to Kimura (1983: 248) VSDMs do not
cause any problem because (i) they accumulate very
slowly and (ii) their impact can be easily counter-
balanced by rare fixations of beneficial alleles. I do not
think that this is correct.

High contamination by VSDMs is reached after Ne

of a lineage remains much smaller than G during
0m−11108 generations. This may be the case in some
vertebrates. In addition, if after a drop of Ne

the expected equilibrium contamination is, say, 100,
VSDMs may become important much sooner, 0106

generations after the drop. The total mutation rate
in mammals is 0100 events per genome. If 10% of
them are VSDMs with the average selection coefficient
10−6 (implying Ne1105), they cause the decline of
fitness by 010−5 per generation (if initially all
nucleotides were best). This decline will become
important 0105 generations after the drop of Ne.

A beneficial mutation is possible only in a site
occupied by a suboptimal nucleotide. This implies that
either a VSDM was previously fixed at this site (in this
case the beneficial mutation can have only a very small
advantage) or that the environment has changed (then
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the mutation can be significantly beneficial). Very
slightly beneficial mutations are part of our analysis:
they appear when VSDMs are frequent and prevent
them from fixation, while changes of the environment,
either in time or in space, can only add a component
to the genetic load (lag-load or migration load,
respectively, see Crow, 1970; Stenseth & Maynard
Smith, 1982). Thus, the load is minimal when, as it was
assumed here, the selection remains invariant in time
and space for a long time, so that all significantly
beneficial mutation are already fixed.

    

 

Because the stochastic mutation load paradox
appears real, it requires a resolution. Five options must
be mentioned.

(i) First, the properties of equilibrium may be
irrelevant, because it is never reached (Crow, 1972).
Chetverikov (1926, Result 7) assumed that the
mutational contamination of a species increases with
time, leading, perhaps, to its eventual extinction. In
reality, of course, there is no reason why a new species
should have a fresh start. However, the suggestion that
accumulation of VSDMs in a lineage with Ne�G acts
as a time-bomb, finally destroying it, is a modification
of this idea. If so, the existence of vertebrate lineages
with NeE104–105 should be limited to 0106–107

generations. Perhaps, this does not contradict the
existing data.

Otherwise, the parameters of natural populations
may not lead to too high contaminations even if the
equilibrium is reached. Because G and m are known
reasonably well, I shall consider only Ne and q(s).

(ii) Ne could be higher than I assumed if the actual
pools of the available genes are larger than what is
usually recognized as ‘‘species’’. However, although
interspecific hybridization (e.g. Spilliaert et al., 1991)
and horizontal gene transfer (Clark et al., 1994)
may occur, it is highly unlikely that they are so
important.

(iii) The nucleotide sites with dangerous values of s
may be rare. This implies that q(s) is bimodal, with the
dip in the range of 10−9QsQ10−5. It is unclear why this
should be the case. Perhaps, the evolution of molecular
interactions could make them insensitive to VSDMs,
by limiting the involved nucleotides or amino acids to
those under substantial selection.

Finally, an average genome may carry many lethal
equivalents of VSDMs, but the load may still be
tolerable. In fact, the principal problem [see eqns (8)
and (10)] is that under exponential w(D) the mean
fitness of a population with M[c]�1 is too low,

compared to w(0). Two properties of selection can
change this conclusion.

(iv) w(D) may involve synergistic epistasis (Tachida,
1990). The condition −D=V[c] [eqn (12)] carries
information only about the rate of decline of w(D)
within the narrow range of contaminations actually
present in the population, say M[c]2 3zV[c]. How-
ever, in general we cannot extrapolate w(D)
outside this range and, if w(D) changes slowly where
D is small, w(0) may be close to w(M[c]−3zV[c]).

(v) Selection against VSDMs may be soft (see
Kondrashov, 1995). Then in the population with a
lower M[c], where a predicted high w(0) becomes
relevant, fitnesses of all genotypes decline.

Of course, selection can be simultaneously soft and
epistatic. These possibilities are illustrated in Fig. 2.
Because under both epistatic and soft selection the
scaling on D axis generally changes with c, I use
the number of deleterious alleles as an independent
variable, assuming that selection coefficients are the
same at all sites. Generally, soft and/or synergistic
selection make it possible to avoid too high a load only
if it is implied, as above, by extrapolating the fitness
function to the best possible genotype (see Lewontin,
1974, figure 17 for a similar analysis of multiple loci
with overdominance).

In contrast, if too high a load is implied by a
large ratio of selection differential to the standard
deviation of the trait, soft selection is irrelevant, while
synergistic epistasis can make the load acceptable only
if this ratio is below 02 [eqn (13)]. Because mGf=U
and Ne s̄�1 (only populationally neutral mutations are
considered), this requires U�1, when the deterministic
mutation load paradox (see Kondrashov, 1995) is
probably more important. However, the analogous
problem may be relevant for overdominance.

If all individuals indeed carry many lethal
equivalents of VSDMs, the perfect mutation-free
genotype is rather different from the best available one,
even if this does not directly translate into high
mutation load. One possible consequence of this is an
advantage to sex, if transition to asexuality signifi-
cantly diminishes the Ne (this idea was independently
proposed and is now developed by Joel Peck).
However, this advantage can hardly provide a
short-term protection to sex (see Kondrashov, 1993):
after a drop in Ne a mutation that became
populationally neutral will require 04Ne generation
to be fixed, and the new equilibrium will be reached
only after 01/m generations (Lande, 1994; Lynch
et al., 1994). In contrast, this effect may, together with
the Muller’s ratchet (D. Charlesworth et al., 1993;
Lynch et al., 1993), limit the lifespan of the asexual
forms.
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F. 2. Possible resolutions of the stochastic mutation load paradox by postulating epistatic and/or soft selection. I assume 107 sites
with identical parameters, such that, according to eqn (3), the average of the genomic number of mutant alleles, x, is either 5×106 (A, a
‘‘natural’’ population) or 1.5×106 (B, a relatively mutation-free population). Under all realistic parameters the variance of x is too small
to be visible on the figure. Four fitness functions w(x) are considered, and the fitness of a genotype relative to the population mean is plotted.
When population A is under exponential selection w(x)=esx, with selection coefficient at a site s=10−6 (plot 1), the ratio of the mean population
fitness over w(0), W, is Q0.01. However, under epistatic w(x) which causes practically the same s (plot 2), W in A is 0.5. Under exponential
soft selection (plot 3) in population B, W is 00.2, although s remains the same. If selection is both epistatic and soft, plot 4 is the fitness
function in B and W=0.5.
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APPENDIX

L. Suppose that the partial derivative fx (x, b)
of a function f(x, b) is uniformly bounded on
[0, a]×[0, b0]. Then,

lim
b4 0+ $b g

a

0

xb−1f(x, b) dx%=f(0, 0).

Proof. By the Mean Value Theorem, f(x, b)=
f(0, b)+fx (j, b)x, where 0EjExEa. Substitution of
this into the integral yields

A(b)=b g
a

0

xb−1f(x, b) dx

=bf(0, b)g
a

0

xb−1dx+b g
a

0

xbfx (j(x), b) dx

=f(0, b)xb=a0+b g
a

0

xbfx (j(x), b) dx

=f(0, b)ab+0(b).

Thus, limb4 0+A(b)=f(0, 0)a0=f(0, 0). QED.
This allows us to evaluate the following limits:

I0= lim
g4 0+ $g g

1

0

xrg−1(1−x)g−1 eax dx%
= lim

g4 0+ 6g$ g
1/2

0

xrg−1(1−x)g−1 eax dx

+g
1

1/2

xrg−1(1−x)g−1 eax dx%7
= lim

g4 0+ 6g$ g
1/2

0

xrg−1(1−x)g−1 eax dx

+g
1/2

0

yg−1(1−y)rg−1 ea(1−y) dy%7
=

(1−0)g−1 ea0

r
+1rg−1 ea1=1/r+ea

and

I1= lim
g4 0+ $g g

1

0

xrg(1−x)g−1 eax dx%
=1rg−1 ea1=ea.

Where both m and n tends to zero while r=m/n=const,
M[f]=I1/I0, which implies eqn (3) in the main text if
a=−4Nes.
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To derive eqn (5), it is sufficient to observe that with
g=4Nen

lim
g4 0+

V[n]
g

= lim
g4 0+

2 g
1

0

xrg(1−x)g eax dx

g g
1

0

xrg−1(1−x)g−1 eax dx

=

2 lim
g4 0+ g

1

0

xrg(1−x)g eax dx

I0

=
(2/a)(ea−1)

1/r+ea .

(Appendix by Alexander I. Khibnik)


